Clue C	
Substance	Energy, in joules per kg, for a 1°C change in
	temperature
air	990
copper	390
concrete	3400
cotton	1400
polystyrene	1300
water	4200
iron	450

Question 3

Can you guess how much energy, in joules, might be needed to raise the temperature of *two* kilograms of iron by 1°C?

Clue D

Different substances behave differently when heated.

It takes 4200 joules of heat energy to raise the temperature of 1kg of water by one degree; but it only takes 450 joules to raise the temperature of 1kg of iron by one degree.

Clue B

Some substances need a lot of energy to warm them up, while others don't need so much.

Question 1

In terms of energy transfer, how is a *rise* in temperature different from a *drop* in temperature?

Page 1

Clue A

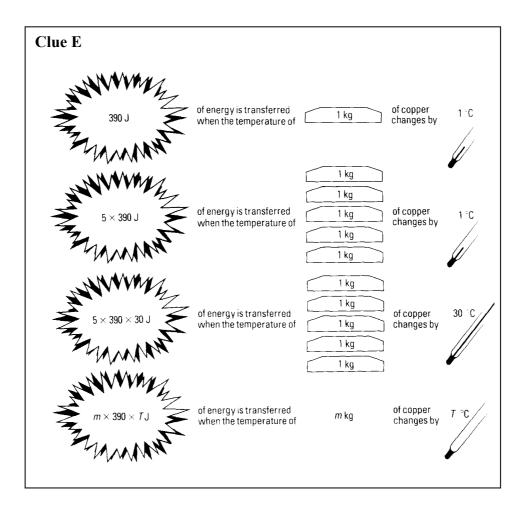
What is the effect of heating some water? -It gets hotter.

This rise in temperature shows that the water now has more heat energy stored inside it.

Question 6

Water is used to fill hot water bottles for warming beds. A hot block of concrete wrapped in a cloth can also be used. Why are these two materials the best for warming something up?

Question 4


Can you guess how much energy, in joules, might be needed to raise the temperature of 1kg of iron by *two* degrees?

Question 5

What is the specific heat capacity of polystyrene (careful with the units)?

Question 2

Can you name a substance that needs a lot of energy to raise its temperature?

Clue F

Surprise surprise, all of this can be summed up by a neat little formula. It goes like this:

Energy transferred = $m \times c \times T$

where

m = mass of object T = change in temperature of objectc is called *specific heat capacity* (the amount of energy needed to change the temperature of 1kg of substance by one degree)

Question 7

How much energy would be needed to raise the temperature of a 5kg block of concrete by 10°C?

Question 9

You can look up heat capacities of different materials in a data book. But someone had to measure these heat capacities at some time.

If you had an immersion heater which put out heat at a known rate (in watts), how could you use it to find out the specific heat capacity of water?

Include in your answer: a diagram, brief method, and an explanation of what data you would collect and how you would present and use it.

Question 8

Write brief notes on what specific heat capacity means, including the formula and some sentences to explain it.